Upper bound on DC wander

In newsletter v4_15 "When to Use AC Coupling" I included the following statement regarding the simulation of $D \bar{C}$ wander:

To estimate the degree of $D C$ wander possible when passing a particular code through a certain high pass filter $\operatorname{HPF}(w)$, first set up a complimentary filter $\operatorname{LPF}(w)$, defined thus:

$$
\operatorname{LPF}(w)=1-H P F(w)
$$

Then, pass the data code through the filter $\operatorname{LPF}(w)$ and look for the worst-case output. Whatever the magnitude of the output of $\operatorname{LPF}(w)$, that's the magnitude of the worst-case DC-wander error you will experience when passing the signal through HPF (w).

The above simulation is made easier if you recognize that time constants associated with filter $L P F(w)$ are usually long enough that the filter doesn't respond to individual bits. You can therefore simply input to the filter $\operatorname{LPF}(w)$ a sequence of $D C$-offset values (each value representing the DC-average value of a coded data word) without worrying about the exact pattern of bits encoded.

That last statement about calculating the wander by only taking into account variations on a per-word basis is, as far as I can tell now, not true. The DC wander does indeed display small peaks within the body of each word that can be significant. Figure I shows the effect.

Figure I-Accumulation of DC wander by a perfect integrator (blue), showing the RD signal, and a leaky integrator (black) representing the output of a practical one-pole low-pass filter.

Ten-bit word boundaries upon which 8B10B guarantees a DC-balance range of $+/ 1$ are indicated with green vertical lines. As you can see, DC-wander ranges as far as $+/-3$ in this example. In a second example I've generated a "worst-case" packet that creates an excursion almost as big as 4.9 , which I believe to be the absolute limit (Figure II).

Figure II—Accumulation of DC wander for a worst-case test packet. Starting from RD- the packet comprises a coded sequence of words formed from twenty bytes of " 84 " (decimal notation for the data byte), followed by "252" and then "211".

In a practical system with AC-coupling time constant tau, coded data baud interval T, and signal amplitude $\pm A$, the worst-case DC-wander excursions will be bounded by $\pm 4.9 A(T / \tau)$.

Here's how I arrived at the worst-case packet.
The system under analysis consists of the DC-wander estimator discussed in newsletter v4_15 "When to Use AC Coupling". Figure III illustrates the block diagram of this estimator.

The top of Figure III shows the input signal $x(t)$ coming into a low-pass filter, with output $z(t)$ representing the DC wander. What we seek are bounds on the amplitude of $z(t)$.

The low-pass-filter $\frac{1}{1+s \tau}$ factors into three portions: $\frac{1}{1+s \tau}=\frac{1}{s T} \frac{s \tau}{1+s \tau} \frac{T}{\tau}$.
This sequence of three block operations appears on the second line of the figure. The importance of this particular factoring is that the 8 B 10 B code guarantees limits on the amplitude of the integrated signal $y(t)$. These limits are enforced by that code's DC-balance algorithm. In the terminology of this particular code the sum of all bits (assuming a one is valued at +1 and a zero at -1) is called the running-disparity, or RD.

Figure III-Decomposition of DC-wander estimation filter leads to an expression relating worst-case RD excursions to worst-case DC wander.

The code by its construction guarantees that each 10-bit code word ends with $\mathrm{RD}+1$ or -1 (never zero). These states are termed RD- and RD+.

The RD rules work like this:

1) Begin assuming RD-.
2) Most data bytes are coded into words having $\mathrm{RD}=0$. Unfortunately, there aren't enough of these code words to fill an entire 256-byte space.
3) The remaining data bytes that can't have $\mathrm{RD}=0$ are each assigned two data codings, one having $\mathrm{RD}=+2$ and the other having $\mathrm{RD}=-2$.
4) If the last code word ended in state RD-, then select the next code word from the table of words having either $\mathrm{RD}=0$ or +2 .
5) If the last code word ended in state RD+, then select the next code word from the table of words having $\mathrm{RD}=0$ or -2 .
6) In summary, each code-word changes the RD by a value of $+2,0$, or -2 , keeping the result limited to the range $[-1,+1]$.

Now, let's assume the code is in state RD+ and ask the question, what is the maximum temporary RD runup that could occur during the transmission of a 10 -bit code word? The answer to that question is 2 , as exemplified by code-word number 243 (decimal), have coded value 1100100001 . Sending the leftmost bit first, and starting with $\mathrm{RD}=1$, the sequence of RD values produced by this code words are:

bit	(begin)	1	1	0	0	1	0	0	0	0	1
RD	1	2	3	2	1	0	1	0	-1	-2	-1

The peak value is 3 . A similar analysis, starting with $\mathrm{RD}=-1$ and using code word 252 (decimal) 0111100001 produces a worst-case trough of -3 . You would get an even worse trough starting with $\mathrm{RD}=-1$ if you could use the RD+ version of this same word, 1000011110, but that would be an illegal violation of the coding rules. If $R D=-1$ you have to use the $R D-$ version of that code word. There are no worse cases (I checked them all, including the control words).

Summarizing our discussion of RD values, the worst-case RD peak and trough for all possible codings are +3 and -3 , respectively. This coding arrangement principle establishes hard limits on the worst-case amplitude of $y(t)$. If the signal $x(t)$ has amplitude $\pm A$ then $y(t)$ is bounded to the range $\pm 3 A$.

Next we must consider that the high-pass filter $\frac{s \tau}{1+s \tau}$ can no more than double the range of its input signal.
This general statement applies to any high-pass filter $h(f)$ where the step response of the related low-pass filter $[1-h(f)]$ has a monotonic step response. Single-pole filters (and some other types of well-damped filters) fall into this category.

To see why that might be the case, I've re-drawn the high-pass filter operation as the difference between a low-pass filter $\frac{1}{1+s \tau}$ and a pass-through branch, according to the simple relation: $1-\frac{1}{1+s \tau}=\frac{s \tau}{1+s \tau}$.

The output range of the low-pass filter, if it is well damped (i.e., monotonic step response) cannot exceed the range of it's input. The range of $u(t)$ therefore must be bounded by $\pm 3 A$, as is the range of $y(t)$. The difference between $u(t)$ and $y(t)$ therefore cannot exceed $\pm 6 A$.

If the bound on $y(t)$ is $\pm 6 A$, then after the last processing step (shown in the middle) the result $z(t)$ must be bounded by $\pm 6 A\left(\frac{T}{\tau}\right)$

To derive the more restrictive bound of $\pm 4.9 A \frac{T}{\tau}$ we have to look at some more code properties.
Specifically, beginning with state RD- ask yourself, "What code word, if repeated, would create the lowest possible average value, and thus the most extreme value of $u(t)$?". One answer to that question is code word 84 (decimal) 0010110101 , producing a DC average RD value of -1.9 . If you transmit a long string of 84 's, then $u(t)$ eventually decays to near -1.9 , and then if you quickly pop the RD up to +3 before $u(t)$ responds, you will see the difference illustrated in Figure III:

$$
y(t)-u(t)=3.0-(-1.9)=4.9
$$

Code word 171 (decimal) 1101001010 provides the same service starting with RD+, and produces a DC average value of +1.9 . There are no worse cases (I checked them all, including the control words).

In conclusion, given bounds on RD of $\pm n$, DC wander will not exceed $\pm 2 n A \frac{T}{\tau}$. In cases where more specific information is available about the worst-case DC average value of RD the bound may be reduced slightly (for 8 B 10 B , to $\pm 4.9 A \frac{T}{\tau}$).

Figure IV—Detail view of Figure III. The data-byte sequence (prior to coding) is 84, 84, 252, 211.

